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Abstract

Predicting where a photo was taken is quite important
and yet a challenging task for computer vision algorithms.
Our motivation is to solve this difficult problem in a city-
scale setting by employing a data-driven approach. In or-
der to pursue this goal, we developed a fast and robust
scene matching method that follows a coarse-to-fine strat-
egy. In particular, we combine scene retrieval via global
features and dense scene alignment and use a large set of
geo-tagged images of downtown San Francisco in our eval-
uation. The experimental results show that the proposed
approach, despite its simplicity, is surprisingly effective and
achieves comparable results with the state-of-the-art.

1. Introduction
In this paper, we focus on solving the city scale scene ge-

olocalization problem. Image geolocalization and its vari-
ants are among the most popular problems investigated by
the computer vision community in recent years. With the
increase in the amount of visual data and the publicly avail-
able datasets, it is now possible to address this problem from
a data-driven perspective by matching a given scene with a
dataset of geo-tagged images and predicting the location of
the query image via the matched scenes. The underlying
challenge here is to come up with a technique for detecting
the exact location of a scene that is robust in the presence
of occlusions, illumination, seasonal and structural changes,
and yet efficient in dealing with large data (Figure 1).

To this end, we propose an accurate and computationally
efficient method that both benefits from global image rep-
resentations and dense scene matching techniques for fast
image retrieval in a city scale setting. The proposed method
follows a simple yet effective coarse-to-fine approach. Us-
ing the global and local cues exist in the query image, i.e.
shapes, colors, skylines, landscapes, buildings, etc. allows
us to make a fairly accurate geolocation estimation through
considering the similarity between the query scene and the
dataset images at different levels, and accordingly using the

Figure 1: Scene Matching. Sample query image (left) and a set of
matched geo-tagged images (right).

geolocation information of the matched scenes.
In the literature, there are two common approaches to

collect geo-tagged image data. One way is to construct a
dataset by performing queries in public photo sharing web-
sites such as Flickr as in [3, 8, 9]. In regard to city-scale
geolocalization, the downside of this approach is that the
collected data is usually disorganized, unevenly distributed
and undersampled to represent a city, and might have noisy
GPS tags. Other and more structured way is to collect the
data by using surveying vehicles such as the Google Street
View cars. This approach offers a good representation for
this problem in terms of dense and evenly distributed data.
However, such data is usually not publicly available on the
web. To the best of our knowledge, the only large-scale
datasets publicly available are the ones by Chen et al. [4]
(1.06M images) for downtown San Francisco (Figure 2),
and by Google [1] (102K images) for downtown and neigh-
boring areas of Pittsburg, PA, Orlando, FL and partially
Manhattan, NY. In this work we evaluated our results us-
ing the dataset by Chen et al. [4] due to its large coverage
(Figure 7).

Contributions. The main contribution of this study is
to approach the city-scale geolocation problem from a per-
spective that rely on a coarse-to-fine strategy so that the sug-
gested approach scales up well to very large datasets. More
specifically, we propose to refine the predictions based on
GIST [14] and Tiny Image [17] global image descriptors
with a dense matching technique called deformable spatial
pyramid (DSP) matching [10]. While the former step re-
duces the search space to a large extent, the latter scene
alignment step greatly increases the recall rate. Moreover,



Figure 2: The downtown San Francisco dataset [4]. 16 sample images from the query set, and 52 sample images from the reference
dataset

for each of these steps, we introduce a simple outlier re-
moval procedure to further improve the results.

The remaining parts of this paper is as follows. In Sec-
tion 2 we briefly review the related work. Section 3 gives
the detailed description of the problem. Section 4 presents
our proposed approach. In Section 5, we evaluate our
method and present the experimental results. In Section 6,
we conclude the paper with a summary, some discussions
on the proposed method and possible directions for future
work.

2. Related Work
Geolocalization from a single image is a well-studied

topic in the literature. Robertson and Cipolla [15] proposed
the first image based method using 200 images taken in an
urban environment. Zhang and Kosecka [20] later devel-
oped an approach to retrieve geo-tagged images visually
similar to a query image using SIFT [13] features and con-
sequently to find the camera position by triangulating the
GPS positions of the retrieved scenes. Schindler et al. [16]
performed location recognition by using a vocabulary tree
and SIFT descriptors on a 20 km. of urban streetside im-
agery with a 30K GPS-tagged set to model large parts of a
city. Hays and Efros [8] aimed at geolocalization by using
6 million GPS-tagged images from the Internet in a world
scale setting. Kalogerakiset al. [9] addressed the problem
of image geolocalization based on human travel priors with
time-stamps on image sequences. Gammeter et al. [6] fo-
cused on an object-level annotation of holiday photos by
retrieving similar geo-tagged images. Baatz et al. [2] dealt
with geolocating images from mountainous areas by using
a digital elevation map. Zamir and Shah [19] developed an
image localization approach by using a 100K set and stor-
ing SIFT features within a tree structure. They then pro-
posed another image gelocalization approach that uses both
global and local features in a 102K set [18].

The closest works to our study is the work of Zamir and
Shah [19], which deals with single image geolocalization
based on Google Street View. Our work differs from their

approach in terms of the way the image retrieval is carried
out. They [19] use a local approach and match the images
via SIFT descriptors, whereas we follow a coarse-to-fine
strategy that benefits from both the advantages of global and
local features in images. In particular, we propose an effi-
cient scheme with GIST [14] and Tiny Images [17] for ini-
tial retrieval of similar scenes and then DSP matching [10]
for dense scene alignment. The latter work of Zamir and
Shah [18] use global features such as GIST and color his-
togram, to overcome mismatches due to the use of only
local cues in scene matching, and propose a method that
combine global and local features which considers multiple
reference nearest neighbors as potential matches for scene
retrieval. We show that our coarse-to-fine matching scheme
based on dense scene alignment with DSP [10] outperforms
the SIFT-based scheme suggested in [18].

As our experimental results (Section 5) show, our work is
highly competitive in terms of performance and, to the best
of our knowledge, the first that efficiently solves the city-
scale geolocalization problem at this scale with over 1.06M
dataset images. As comparison, the work of Schindler et
al. [16] uses a 30K set, and the work of Zamir and Shah [18]
uses a 102K set.

3. Problem Definition and Challenges
The main goal of this study is to estimate the geoloca-

tion information of a single photograph of a scene taken in
an urban area by considering only the available visual cues
such as color and shape information. In order to geolocal-
ize an image, we match the given scene with a dataset of
geo-tagged images. The idea is to make a prediction based
on the locations of the similar images in the dataset, with
an underlying assumption that these retrieved images are in
close vicinity to the query image.

The challenge here is that the retrieved scenes from the
dataset might be found visually similar to the query im-
age, but in fact, they could be far from the real location
of the query image. Another challenge is that we want the
error threshold be within a desired range, e.g. we used a



Figure 3: System Overview. For a query image, our coarse-to-fine approach first finds the top matches in the dataset using GIST and Tiny
Image descriptors, which is followed by an outlier removal procedure. This initial set of images is then refined by densely aligning the
retrieved images using DSP matching and accordingly removing the outliers this time by consider the alignment scores.

300 m. error threshold in our experiments. Local cues such
as SIFT-like features, are found to be effective in finding a
match between two scenes. However, it is extremely hard
to obtain near real-time performance when local features
are used for searching for visually similar scenes within a
very large dataset. Hence, solving this problem in near real-
time is also another challenging task. In order to overcome
these issues, we developed an algorithm that retrieves and
scores the scenes from the dataset in two stages. This effi-
cient coarse-to-fine algorithm ensures that retrieved scenes
do accurately match via a final dense scene alignment step.
We give the details of our proposed method in the next sec-
tion.

4. Our Approach
In order to find the location of an image taken in an urban

area, we compare the query image with the entire dataset by
following a coarse-to-fine strategy. Our motivation here is
to find best possible candidates without compromising the
query time in a large scale dataset. Figure 3 presents the
system overview of our proposed algorithm. Moreover, the
algorithmic details are provided in Algorithm 1.

In particular, we undertake the task of image geolo-
calization in a coarse-to-fine algorithm, which we call
Retrieve-Align-and-Predict (RAP), consisting of three dif-
ferent stages described below:

• Scene retrieval (Section 4.1): Given a query im-
age, find a set of images that are visually similar in
terms of scene context. Remove the outliers with the
worst matching scores and the furthest away to the top
matched scene (Section 4.3).

• Scene alignment (Section 4.2): Refine the initial set
of images by densely aligning them with the query im-
age. Then similarly remove the remaining outliers with
the worst alignment scores and the furthest away to the
top aligned scene.

• Geolocation prediction (Section 4.4): Predict the ge-
olocation of the query image by using the locations of
the remaining top-aligned scenes.

Algorithm 1 RAP (Retrieve, Align and Predict)

1: Input: image i, weights wg , wt

2: Phase I: Scene Retrieval
3: for each item x in reference dataset R do
4: Sg(i, x)← GIST score
5: St(i, x)← Tiny Image score
6: Sjoint(i, x)← wg.Sg(i, x) + wt.St(i, x)

7: Phase II: Scene Alignment
8: N ← best candidates in R based on Sjoint(i, x)
9: K ← FNR(N,Sjoint)

10: for each item y in K do
11: Smatch(i, y)←Match score via DSP
12: L← FNR(K,Smatch)
13: Phase III: Geolocation Prediction
14: Loc∗ ← predict(L)
15: return Loc∗

4.1. Scene Retrieval

Scene retrieval is the key component of our whole
method as the final prediction accuracy depends on the qual-
ity of the initial retrieval set. To retrieve similar scenes,
we first match the reference images in the dataset with
the query image by estimating the similarity between them
in terms of the popular global image descriptors, namely
GIST [14] and Tiny images [17]. If two scenes are found to
be similar, we have a high score, otherwise the score is low.
We retrieve scenes that look most similar to the query scene
based on these similarity scores.

Scene matching in a large-scale dataset is a computa-
tionally time consuming task, which is of great importance
if near real-time performance is desired. We solved this
problem by dramatically reducing the search space via a
coarse-to-fine strategy consisting of two stages. In the first
coarse matching phase, we compute GIST [14] and Tiny
image [17] descriptors for the query image and compute the
normalised Euclidean distances between the precomputed
descriptors of images in our dataset.
GIST. The GIST descriptor [14] is a global image feature
that holds several characteristics about a scene such as the
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Figure 4: Size matters. The number of the images in the dataset is important. As the size increases, the quality of the nearest two matches
increases considerably.

strength and the amount of vertical and horizontal lines
in a scene. GIST feature help us to understand the simi-
larity between two scenes by looking at the cues such as
the buildings, textures, skylines and other objects and have
been shown to work very well in terms of retrieving similar
scenes [7].
Tiny Images. We additionally used Tiny Images [17] to
further improve the recall rates. It is a fast to compute color
based descriptor which is simply estimated by the smaller
versions of images, such as 32 × 32 and shown to be ef-
fective for object recognition and scene classification espe-
cially for larger datasets.

To obtain visually similar images in the dataset we com-
pute a weighted sum of GIST and Tiny Image scores. Com-
bining these two different metrics for the initial retrieval
step ensures our method to perform fast in a large scale
dataset, which in turn reduces the search space dramatically
while yielding fairly good results. It should be noted that
the retrieval quality is significantly affected by the dataset
size. As illustrated in Figure 4, the quality of the retrieved
scenes improves drastically as the dataset size increases.

4.2. Scene Alignment

Relying on global features such as GIST and Tiny Im-
ages is a fast way to search against a large scale dataset for
overall similarity of scenes but such an approach does not
guarantee the exact matches since global descriptors often
not robust to occlusion, viewpoint and orientation changes.
That is the query image might have a different orientation
or viewpoint compared to reference images but a robust
method should still be able to find good matches in the pres-
ence of such situations. Hence, as a refinement step, we
compute dense correspondences between the query image
and the retrieved set of similar images.

To align the short list of relevant images with the query
image, we propose to use the so-called deformable spatial
pyramid (DSP) matching method [10]. The DSP algorithm
is a fast and accurate dense matching method, which simul-
taneously operates at multiple spatial extents, i.e. from the
entire image to coarse grid cells, up to every single pixel.
In this way, we can efficiently discard the qualitatively bad

matches, resulting in a more accurate set of nearest neigh-
bor images.

The DSP matching method first defines a spatial pyramid
and divide the entire image to four rectangular grids and
keep dividing until a desired number of pyramid levels is
reached. Finally, it adds an additional level where each cell
is of a pixel wide. The approach define spatial nodes of
different sizes for each level of pyramid, larger nodes for
greater regularization and smaller ones for fine matching.
In DSP, each grid cell is described as nodes of a graph. The
matching cost is computed for each node by using multiple
descriptors. The goal is to find the best translation for each
node from first image to second image, which is modelled
as the following energy minimization problem:

E(t, s) =
∑
i

Di(ti, si) + α
∑
i,j∈N

Vij(ti, tj)

+ β
∑
i,j∈N

Wij(si, sj)
(1)

where ti is the translation for node i in first image to sec-
ond image, Di is the appearance matching cost of node i at
translation ti, Vij is a smoothness term, Wij denotes a scale
smoothness and si is a scale variable for node i and α and
β are constant weights.

This dense alignment approach has huge advantage in
scenarios where the query image and the reference image
is taken from different viewpoints or have different field of
views.

4.3. Outlier Removal

To make a precise geolocalization, eliminating outliers
is as important as finding the best matches in both scene re-
trieval and alignment steps. The introduction of this stage
is to simply filter the unlikely matches that might exist in
the candidate lists. Here, we propose a novel two stage
outlier removal procedure which we call Furthest Neighbor
Removal (FNR). In this algorithm, we first employ similar-
ity based outlier removal by considering visual dissimilarity
scores, and then a distance based outlier removal by exam-
ining 2D distances computed from the geo-tag information.
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Figure 5: Similarities. Joint similarity scores of the initial re-
trieval list (left) and the matching scores after outlier removal via
FNR (right).

Algorithm 2 FNR (Furthest Neighbor Removal)

1: Input: candidate list C, similarity metric S
2: Phase I: Removal by dissimilarity
3: for each item x in candidate list C do
4: if S(x) ≥ (1 + ε) ·min(S) then
5: remove(x) from C

6: Phase II: Removal by 2D distance
7: for each item x in candidate list C do
8: Di(x)← average pairwise distance to item i, i ∈ C
9: if Di(x) ≥ φ then

10: remove(x) from C
return C

We first utilize a ratio test based on the parameter ε to
select the nearest neighbors in an adaptive way. Mathe-
matically speaking, the neighbors that do not fall within
a disk defined by the nearest similarity scores (either the
joint scores via global features or the match scores via dense
alignment) are removed. This procedure is generally named
ε-NN set, and returns all the neighbors (1+ ε) times the min-
imum distance from the query:

N(x) = yi | dist(x, yi) ≤ (1 + ε) · dist(x, ymin)

ymin = min(dist(x, yi))
(2)

We note that this simple inlier selection strategy have
proven to be effective for data-driven semantic segmenta-
tion [12] and texture synthesis [5, 11].

Following visual similarity based elimination, we em-
ploy a 2D spatial distance based elimination. However, we
do not simply apply a naive thresholding, but rather com-
pute average pairwise distances for remaining neighbors
and use another ratio, φ, to eliminate the furthest neighbors
adaptively based on their distance ratio to other neighbors.

The details of the FNR procedure are fully described in
Algorithm 2. In Figure 5, we demonstrate the effect of ap-
plying the outlier removal procedure on the list of relevant
images retrieved based on the global descriptors.

4.4. Geolocation Prediction

The prediction phase is quite general. Given a query im-
age, it takes a set of candidates and returns the best possible
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Figure 6: Geolocation Estimation. For a sample query image,
short list of candidates (left), the inliers found after FNR on the
scene alignment scores (right). The blue dots indicate matched
scenes. The green square is the groundtruth position of the query
scene, whereas the red crosses are the eliminated outliers. The
black asterisk indicates the estimated location using the available
candidates.

geolocation by using the 2D position of each candidate and
their visual similarity to the input scene. With the best can-
didates retrieved by our RAP algorithm, we make a triangu-
lation by using a weighted averaging based on the similarity
and 2D positions of the candidates as:

Loc∗ =
∑

wiLoc(xi)

wi =
S(x, yi)∑
i S(x, yi)

(3)

where Loc(xi) denotes the geolocation of the candidate
image xi and the weight wi refers to the normalized
similarity of the query to that image. In Figure 6, we
illustrate a sample geolocation prediction performed using
Equation 3.

In the experiments, we used a fix set of parameters given
in Table 1.

Table 1: Algorithm Parameters

Parameter Name Parameter Value
Short list size 100
φ distance ratio for removing outliers 0.5
ε-NN ratio for removing outliers 0.1
Tiny image size 32× 32
Tiny image weight wt 0.1
GIST size 512× 512
GIST weight wg 0.9

5. Experimental Results

In the following, we describe the dataset we used in our
experiments, together with the details of training, testing
and tuning of our approach.
Dataset. As reference dataset, we used publicly available
city scale georeferenced dataset of downtown San Francisco
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Figure 7: Database locations. Reference dataset (blue dots), and
query set (red dots)

constructed by Chen et al. [4]. There are over 1.06 mil-
lion perspective images in this dataset. The data was col-
lected by LIDAR sensor and a panoramic camera as 150K
panoramic images. Afterwards, panoromic images were
converted to perspective images with each image having
60◦ field of view, 640 × 480 resolution and 50% overlap
with neighboring images [4]. For the experiments, we com-
pute and store the GIST and Tiny Image descriptors of each
image in this dataset alongside their GPS coordinates.
Query Set. To simulate a real world geolocalization sce-
nario, we used 596 challenging query images. These GPS
tagged images are taken by various mobile phones and pro-
vided by [4].

The distribution of the downtown San Francisco dataset
and query images are shown in Figure 7 in which the loca-
tions of reference and query images are marked with blue
and red colors, respectively. Some sample query and refer-
ence images are given in Figure 2.

5.1. Evaluation Criteria

We evaluate the effectiveness of our approach in terms
of three different criteria, that is accuracy, efficiency
and chance. The accuracy is computed by means of the
estimation error, the distance between true geolocation of
the query image and the predicted one. We consider a ge-
olocalization successful if it is within 300 m. in the vicinity
of its true location. Second, we analyze the performance of
our method in terms of running times. Third, we compare
our results against the random selection of a geolocation
from the data set that we refer to as chance. As a further

Figure 8: Scene Retrieval. Query images (left) and retrieved im-
ages from the dataset (right).
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Figure 9: Recall accuracy. For various thresholds.

benchmark, we compared our results with the predictions
via GIST and Tiny Image descriptor. Additionally, we
analyze the effectiveness of the DSP approach [10] against
a SIFT based local matching. The latter can be seen as
a two step naı̈ve implementation of Zamir and Shah’s
work [18].

Qualitative Results. Figure 8 shows some sample query
images along with the dataset images which are found rel-
evant by the proposed approach. As can be seen, the re-
trieval set includes images of the scenes that either depicts
the query scene or visually very close ones.
Quantitative Results. In Figure 9, we plot the perfor-
mances of various approaches at different recall levels. Our
results indicate that the proposed algorithm can geolocalize
24% of query set within 300 m. and our method performs



11 times better than chance. All instances of query images
are succesfully geolocalized within 3.9 km. Moreover, our
suggested scheme (GIST + TINY + DSP) outperforms other
schemes in recall rates for 300 m. threshold.
Runtime Performance. We implemented the proposed
method and algorithms in MATLAB and performed our
experiments on a Linux based Intel(R) Xeon(R) 2.50GHz
computer on 12 cores. In terms of computational perfor-
mance our method geolocalizes a scene under 160 seconds
on average. However, the SIFT-based implementation per-
forms better in terms of computational costs, it can geolo-
calize a scene under 135 seconds on average, with a slightly
worse performance.

6. Conclusion
In this paper, we described a fast and robust method

for city scale scene geolocalization. We also demonstrated
the performance and the quality of proposed method by
using various evaluation criteria. Our method combines
global image descriptors with a dense scene alignment strat-
egy, and successfully geolocalizes challenging query scenes
taken in urban areas.

There are some challenges that have to be addressed in
order to get more reliable gelocalization results from our
method. Our approach is based on matching geo-tagged
scenes with query images taken from street level urban im-
ages with unknown camera parameters. We assume that
at least one reference image is taken as that of the simi-
lar vantage point as the query image. Therefore, there is
no possibility to match query images from unsampled lo-
cations. This limitation leads to poor results when there is
no matched samples in the reference dataset from the query
image location, c.f . Figure 4 for size limitations.

Acknowledgments
We would like to thank to the following researchers, Kim

et al. [10] for making DSP code, and Chen et al. [4] for
making their dataset publicly available.

References
[1] ICMLA 2011 StreetView Recognition Challenge.

http://www.icmla-conference.org/icmla11/
challenge.htm. 2011. 1
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