HACETTEPE

COMPUTER Applications of

VISION LAB Semih Yagcioglu, Erkut Erdem and Aykut Erdem S Computer Vision ,
Department of Computer Engineering, Hacettepe University, Ankara, TURKEY

-

City Scale Image Geolocalization via Dense Scene Alignment @Q colEE Winter®

—

Contribution Method Experimental Results
= A coarse-to-fine strategy for the city-scale image geolocalization = We use local and global image cues. e
problem that scales up well for very large datasets. = We define the similarity between the query and a related set of geotagged —e— GISTTINY+DSP
images at different levels of granularity. DIV
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Introduction | EE= ’ |
= We focus on solving the city-scale scene geolocalization problem: Given re s g l l |
an image, identify the exact location it was taken. x b | g :
= Challenges: System Overview. | e
= occlusions, illumination, seasonal and structural changes, - —°
= scalability issues when dealing with large data. Our method consists of three different stages.. | |
= Scene retrieval ’ ” " Error Threshold (m) =0 0
— In terms of scene context, find a set of images that are visually similar to the query. Recall Accuracy. Scene Retrieval.
— Remove the outliers with the worst matching scores.
<L = Scene alighment = 1.06M dataset images, 596 query images provided by Chen et al. (2011)
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R N EE 7= — Remove the remaining outliers with the worst alignment scores. = 11 times better than chance.
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iroundtruth Longitude : -122. , | _ ' : : : : i
ST eeea———TTTheT, T e, Predict the geolocation of the query image by using the locations of the remaining » Our suggested scheme (GIST + TINY + DSP) outperforms other schemes
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| | In recall rates for 300 m. threshold.
Scene Matching. Sample query image (left) and a set of matched geo-tagged - _ _
images (right). = = Runtime, 160 sec. on average (cf. SIFT-based baseline 135 sec.)
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Aim oo R | | Conclusions
= Our motivation Is to solve this difficult problem in a city-scale setting. == = Our method combines global image descriptors with a dense scene
= \We develop a fast and robust scene matching method that follows a ' alignment strategy.
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coarse-to-fine strategy by employing a data-driven approach. - = e T = Proposed method successfully geolocalizes challenging query scenes
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Database locations. Similarities. J_oint similarity scores of the initial _retrieval list (left) = As the dataset size increases, the overall quality increases.
Reference dataset (blue dots) and the matching scores after outlier removal (right).
and query set (red dots)




